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Summary

The use of mixed model methodology to estimate selection response and realized heritability
from selection experiments with no controls is investigated. It has been suggested that the
:egression of predicted genetic worth on cumulative selection differential gives an estimate of
heritability in a selected population. An assumed value of heritability is used to predict the genetic
worth. It is shown for 2 simple designs, using pedigree information on one sex with both discrete
and overlapping generations, that the predicted values depend crucially on the assumed value of
heritability and not on the heritability in the population. Hence the regression estimator does not
give an estimate of heritability in the selected population.
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Résumé

Application des méthodes du modèle mixte à l’estimation de l’héritabilité
réalisée dans une population soumise à sélection

Cette étude concerne l’application de la méthodologie du modèle mixte à l’estimation de la
réponse à la sélection et de l’héritabilité réalisée dans des expériences de sélection sans témoin. Il
a été suggéré que la régression de la valeur génétique prédite sur la différentielle cumulée de
sélection fournit une estimation de l’héritabilité dans une population soumise à sélection. Une
valeur supposée de l’héritabilité est utilisée pour prédire la valeur génétique. On montre, dans 2
dispositifs simples utilisant l’information sur les apparentés dans un seul sexe, avec générations
séparées ou chevauchantes, que les valeurs prédites dépendent de façon critique de la valeur

supposée de l’héritabilité et non de l’héritabilité dans la population. Par suite, l’estimateur de la
régression ne fournit pas une estimation de l’héritabilité dans la population soumise à sélection.

Mou clés : Héritahilité réalisée, modèle mixte.

I. Introduction

In experiments to evaluate the response to selection there is often a need to

disentangle genetic trend from environmental effects. Two possibilities are to use

divergent selection schemes (HILL, 1972a) or to use a control group (HILL, 1972b).



These designs allow regression of response on selection differential to give estimates of
realised heritability (FALCONER, 1981). BLAIR and POLLAK (1984) investigated a third
possibility of using mixed model methodology on a selected population to estimate

genetic response. Mixed model methodology was first suggested as a means of separa-
ting genetic from environmental trends in dairy cattle records subject to culling
(HENDERSON et CII. , 1959). It was later discovered that this technique was a more

powerful concept useful in problems of prediction of breeding values corrected for
fixed effects (HENDERSON, 1973) and estimation of variance components by maximum
likelihood (HARVILLE, 1977).

BLAIR & POLLAK (1984), by analogy with selection experiments, suggested using the
regression of predicted yearly genetic means on the cumulative selection differential,
bBP, as an estimate of realised heritability. For one particular sheep selection experi-
ment they state the standard error of bBP is about the same as that for an estimate

based on using both selected and control flock data. If true, this would be a

remarkable result showing that selection experiments could be more efficient without
control lines than with control lines. BLAIR & POLLAK (1984) noted that the results and
conclusions may be influenced by the heritability value used in the prediction process.
It seemed useful to quantify the extent of this influence. Partly to see if it was merely a
numerical artefact, and partly because in one simple case, briefly discussed by THOMP-
SON, 1979, bBP is exactly the value of heritability used to predict the breeding values.

By algebraically considering 2 simple designs it is shown that the regression
coefficient does not give an estimate of heritability in the selected population. The
designs considered in detail are partly motivated by actual selection experiments in this
institute (PURSER, 1980), comments by BLAIR & POLLAK (1984) and last, but not least,
algebraic simplicity. In both designs a pool of dams of constant genetic merit is
assumed and pedigree information on the female side is ignored (a common occurence
in dairy sire evaluation). Design I is a design where in each of T years sn males are
measured and after the first year n sons of each of s sires are measured. In order to

reduce genetic drift, suppose there is within family selection on the basis of the

measured trait so that only one son of !ach sire is used as a sire. This design has no
overlap between generations. _ j . ,j< &dquo; 

.. 

, 

’

In design II suppose again sn males are measured in year 1. Then suppose s sires
are selected using the measured trait and they each have n sons in year 2 and in year
3. One son is selected from each of the s sire families in year 2 and has n sons in year
3. There is now overlap ip year 3 with offspring from sires of age 1 and 2.

II. Analysis ’_

A. Design I 

’

The observation and predicted additive genetic value for the ith animal in year 1

will be written as y; and si (i = 1, .. , sn) and let i = 1, ..., s represent sires that have

offspring, also y,ij and s,ij represent the measurement and predicted value for the jth
descendant of sire i in year t, and let j = 1 denote the individuals that have offspring.



Then suppose

It is assumed that there are fixed effects, m&dquo; associated with measurements on the
t-th year and a residual variance Qe associated with each observation. When there is no
selection the genetic covariances between sires can be derived from the coefficients of
parentage and the additive genetic variance, 0-;&dquo; (KEMPTHORNE, 1957) and this variance
matrix will be denoted by Aor’A. It is well known that the genetic variances change with
selection, but if a2AS is thought of as the additive genetic variance in the base

population before selection and selection is on traits included in the model, then a
conditional argument can be used to show that operationally one can use A(J’2AS as the

genetic variance matrix when estimating fixed effects (HENDERSON et al. , 1959) and
when estimating u2As (Cuxrrow, 1961 ; THOMPSON, 1979).

In the appendix, mixed model equations are given and manipulated to show that
estimators of genetic merit and year effects for this model are :

where h2 is a prior estimate of heritability and 1>w = 3h2/(4 - h2) is a within half-sib ’

family estimate of heritability.

BLAIR & POLLAK (1984) suggest regressing 9, on the cumulative selection differen-
tial. For this design the cumulative selection differential, CSD&dquo; at the end of year t

satisfies CSD, = (1/2) CSD, - + (1/2) (y; - yj) with CSDo = 0.

The predicted mean genetic merit is a multiple of the cumulative selection differen-
tial plus a correction term for the difference in heritabilities in the first and succeeding
years that halves each year. The regression of s!+, on CSD! gives a regression
coefficient lying between 11&dquo;, and h2 and tending to hw as t increases.

0 c

A slight extension of the notation is needed to deal with this design because sires
have sons in 2 years. Let Y13ii be measurements in year 3 on sons of males in year 1,
with a similar definition of sire effects. r -

/.&dquo;&dquo;/. ’ &dquo;’



Also let

It can be shown from the results in the appendix, that estimates of genetic merit using
an assumed value of heritability, h2, are

The terms, q&dquo; q2, q, #A can be found from functions of n and h2. In table 1 are given
values of q&dquo; q, and q, for various values of n and h’ showing that q&dquo; q2, q3 increase as
h’ increases and that q, and q3 decrease and q2 increases as n increases.

The cumulative selection differentials in this case are CSD, = (1/2) (y; - y,)
and CSD2 = (3/8) (y; - yj + (1/4) (yi - yz) so that s.!, = 11; CSDt +

(1/2’ ’) (hZ - 11;) CSD, + q,+, z z (h 2), the same form as for design I with the addition
of an extra term q, + , z (hZ).

In order to interpret the z (hz) term, it is seen, by considering the year effects
estimators from design I, that there are in design II two estimates of m3 readily
available i.e. m3 = y3 - (1/2) k (y% - y2) - (1/4) hz (y; - y,) and m3 = y,3 - (1/
2) hz (y; - y,). The discrepancy between these 2 values is z (h2). This is used in the

mixed model approach to provide information on m, and mz, and q, and q2 can be



interpreted as measures of the information that z (hl) provides on m, and m,. Alternati-
vely consideration of repeat-mating designs (for example, GIESBRECHT & KEMPTHORNE,
1965) suggest estimating hs = u§J(u/ + cT;,s) the heritability in the population by
choosing hs so that z (hs) = 0.

As the expected value of y! - y&dquo; is 1/2 h _2 (yz - yz) - (1/4) h; (y; - y,) the

expected value of bBI, E (b,,),is a function of h’, n, h, and the selection differentials.
When (y*, &mdash; y,) _ (yz - y,) then n and h. have little effect on E (bop). For instance for
n = 30 and h, = 0,1 then E (bop) = 0.094, 0.291 and 0.493 when hz = 0.1, 0.3 and 0.5
and when n = 30 and h, = 0.5 then E (bop) = 0.088, 0.280 and 0.483. Again showing
the crucial dependence of bop on the assumed value of heritability hZ and not on the
population value h;:

III. Discussion

In 2 simple designs it has been shown that bgp does not estimate heritability in the
selected population. This should not be surprising in design I because of the confoun-

ding between years and generations. It is worrying in design II when a natural
estimator of heritability is available.

Actual selection experiments, including the one considered by BLAIR & POLLAK

(1984), are often more complicated than these 2 designs. For instance (i) mass or index
selection could be carried out, (ii) measurements and pedigrees on females might be
available, (iii) there could be more overlapping of generations, (iv) other effects such as
$age of dam, partially confounded with generations need to be estimated, (v) it is rare
to have equal family sizes. To take account of (i) one could try to explain s, in terms of
selection differentials within and between families. But if the phenotypic selectional
differentials were used one would expect b,, to be larger than 1>w&dquo; but not as large as
h2. The actual magnitude depends on h, and the actual selection scheme. The major
consequence of (ii) would be to reduce 11; to within full-sib heritability hz/(2 - h2).
With (iii) the definition of the cumulative selection differential needs more care and
there is the need to take account of the cumulative selection differential in the

contemporaries (PURSER, 1980 ; JAMES, 1977). Both (iv) and (v) add some complexity to
the analysis. None of these reasons suggest that bop will ever be a reasonable estimator
of heritability from selection experiments without control.

As the estimated means s, are derived from selection differentials they are not
observed responses. Therefore the variances of !, _are not_ expressible in terms of the
drift variances-HILL (1972a) derives for observed responses as BLAIR & POLLAK (1984)
assume.

Obviously when the value of h2 used in predicting s, is the value in the population
then the calculation of s, and bBP can be useful as a monitoring device for the selection
scheme and can be thought of as a sophisticated version of the predicted response
h!m rather than as a measured iesponse to selection. However in selection experi-
ments there will usually be the need -ta -generate internally some evidence or tests for
the value of parameters in the model including heritability. Just because some predic-
tion of s, is available from selection experiments without controls using mixed model
methods does not seem to me sufficient grounds for recommending the use of such
designs.



Of course there are other methods of estimating heritability and some of these are
related to equating sums of squares of predicted values to their expectation (THOMPSON,
1977 ; SORENSEN & KENNEDY, 1984). However just because estimates are available does
not imply that designs without controls are particularly efficient.

As a simple example consider 2 designs for 2 generations with N males measured
in the first generation. In the first design offspring are raised from the best 2n males
and heritability estimated by regression of offspring on parent. In the second, n males
are chosen at random (a control) and the best n from the remaining N: In this design 2
natural estimates are possible, one by comparing the response and selection differential
and another by regression of offspring on parent. The variances of the 3 estimators are
then inversely proportional to (I - i (i - x)), i’2/2 and 1 - i’ (i’ - x’)/2 + i’2/2 (for
example HILL (1970)) where x and z are the truncation point and ordinate for a normal
distribution with a proportion p = 2n/N truncated and i = z/p and x’, z’, i’ are the

corresponding values for p’ = n/(N - n). For example with n = 10 and N = 100 then
relative to the variance estimator in the first design, the two estimators in the second
design variance 0.68/4.57 = 0.15 and 0.49/4.57 = 0.11 showing that the design with a
control provides almost 10 times as much information on heritability as the design
without a control.
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Appendix

In this appendix estimators of year effects and mean genetic merit are derived for
the two designs.

Design I

Mixed model equations (HENDERSON, 1973) for this design have a simple form
because of the pattern in A-’. 1. Let G = Qe/a2A = (1 - hl)/hI, H = G/3 and

F = 1 + 4 H = (4 - h 2)/3h = 1/k, then estimators of mi, s,i and S,ii satisfy

; --.

These equations can be thought of as Aeast squares equations with extra coeffi-
cients, (i) for males with no sons (G or F &mdash; 1 depending on whether their fathers are
measured), (ii) for males with sons (G + nH or F ,, + nH depending on whether r,
fathers are measured), (iii) for sires and sons (- 2H).

,/
By adding together equationi and dividing by sn it can be shown that . , 

...



By adding together equations for animals not selected it can be shown that

so that the mean merit of animals in year t is half the mean merit of their fathers. The
ny<riL-of_ selected sires in year t is the mean merit.in year t ptus the selection
diff!Leniia! +!!p! !me!ye of heritability.. _ __

Design 11

Eliminating effects for males with no progeny and adding within generations it can
be shown that



Manipulating these equations (Al-5) it can be shown that

where z (hl) is defined in equation (1) and ql, q2, q3, q4 and qs are solutions for m&dquo;

M2, m3, s; and s2 in equation (Al) - (A5) with y, = y; = y2 = yz = 0 and y&dquo; = y3 =

- 1/2.

Hence the q values are functions ofoh 2andlo The mean genetic values can be
derived from the estimates Winll mz and rE]afid are given in equation (2) - (4).


